CORRIGENDA

'Resonant surface waves'
By J. R. Ockendon and H. Ockendon
J. Fluid Mech. vol. 59, 1973, p. 397

The asymptotic solution of (C1),

$$
\begin{equation*}
\frac{\gamma^{2}}{2} \frac{d}{d X}\left[X\left(\frac{d X}{d Y}\right)^{2}\right]+4 k+2 G X=\frac{2 Y^{2}}{X^{2}} \tag{C1}
\end{equation*}
$$

and the discussion leading to (3.15) are incorrect. For $Y \gg \gamma$, the appropriate scaling is $\bar{Y}=-\gamma^{-1} Y, d Y^{*} / d \bar{Y}=\psi(Y)$ and $X \sim X_{0}\left(Y, Y^{*}\right)+\gamma X_{1}\left(Y, Y^{*}\right)+\ldots$. X_{0} is periodic in Y^{*} and satisfies

$$
\frac{1}{2} \psi^{2} X_{0}\left(\partial X_{0} / \partial Y^{*}\right)^{2}+4 k X_{0}+G X_{0}^{2}=C(Y)-\left(2 Y^{2} / X_{0}\right)
$$

Figure 1. Responses curves for $G>0$.
Thus, since $Z=\frac{1}{2} X d X / d \bar{Y}$, the solution as $\gamma \rightarrow 0$ is a tightly coiled spiral lying in the surface

$$
Z^{2}=\frac{1}{2}\left(-G X_{0}^{3}-4 k X_{0}^{2}+C X_{0}-2 Y^{2}\right)
$$

The solvability condition for the linear equation for X_{1} gives

$$
\frac{d}{d Y} \int_{a_{1}}^{a_{2}}\left(-G X_{0}^{3}-4 k X_{0}^{2}+C X_{0}-2 Y^{2}\right)^{\frac{1}{2}} d X_{0}=0
$$

where $\alpha_{1}(Y)$ and $\alpha_{2}(Y)$ are the two positive zeros of the integrand. C and Y can be related parametrically in terms of elliptic functions. Again, ψ is determined by the condition that X_{0} has constant period in Y^{*}.

There is a different response curve for each intersection of this spiral with the initial surface. For small γ these intersections are all close to each other and lie on the curve given by

$$
Y^{2}+Z^{2}=V^{2} X_{0}, \quad G X_{0}^{2}+4 k X_{0}+2 V^{2}=C(Y)
$$

The extreme values of X_{0} for a given k occur in $Z=0$ and are given by
i.e.

$$
\begin{gathered}
X_{0}=\alpha_{i}\left(V \sqrt{ } X_{0}\right) \quad(i=1,2), \\
G X_{0}^{2}+4 k X_{0}+2 V^{2}=C\left(V \sqrt{ } X_{0}\right)
\end{gathered}
$$

where C depends on k as well as X_{0}. This curve can be drawn using computed values of $C(Y)$ and is shown in figure 1 as $A B C$. For a given X_{0}, the minimum k occurs when $Y=0$ since $C(Y)$ increases monotonically with Y and $C(0)=0$. At this point, $G X_{0}^{2}+4 k X_{0}+2 V^{2}=0$ and this curve is shown in figure 1 as $C D E$. The remaining response curves lie close to each other in the shaded region between $A B C$ and $C D E$. Figure 1 replaces figure $2(a)$ in the original paper.
'Oscillating flow over a cylinder at large Reynolds number'
By H. A. Dwyer and W. J. McCroskey
J. Fluid Mech. vol. 61, 1973, p. 753

The labels $\theta=78^{\circ}$ and $\theta=82^{\circ}$ to curves in figure $8(b)$ should be transposed.

