## CORRIGENDA

'Resonant surface waves'

By J. R. OCKENDON AND H. OCKENDON J. Fluid Mech. vol. 59, 1973, p. 397

The asymptotic solution of (C 1),

$$\frac{\gamma^2}{2}\frac{d}{dX}\left[X\left(\frac{dX}{dY}\right)^2\right] + 4k + 2GX = \frac{2Y^2}{X^2},\tag{C 1}$$

and the discussion leading to (3.15) are incorrect. For  $Y \ge \gamma$ , the appropriate scaling is  $\overline{Y} = -\gamma^{-1}Y$ ,  $dY^*/d\overline{Y} = \psi(Y)$  and  $X \sim X_0(Y, Y^*) + \gamma X_1(Y, Y^*) + \dots$ .  $X_0$  is periodic in  $Y^*$  and satisfies

$$\frac{1}{2}\psi^2 X_0 (\partial X_0 / \partial Y^*)^2 + 4kX_0 + GX_0^2 = C(Y) - (2Y^2 / X_0).$$



FIGURE 1. Responses curves for G > 0.

Thus, since  $Z = \frac{1}{2} X dX/d\overline{Y}$ , the solution as  $\gamma \to 0$  is a tightly coiled spiral lying in the surface

$$Z^{2} = \frac{1}{2}(-GX_{0}^{3} - 4kX_{0}^{2} + CX_{0} - 2Y^{2}).$$

The solvability condition for the linear equation for  $X_1$  gives

$$\frac{d}{dY} \int_{\alpha_1}^{\alpha_2} (-GX_0^3 - 4kX_0^2 + CX_0 - 2Y^2)^{\frac{1}{2}} dX_0 = 0,$$

where  $\alpha_1(Y)$  and  $\alpha_2(Y)$  are the two positive zeros of the integrand. *C* and *Y* can be related parametrically in terms of elliptic functions. Again,  $\psi$  is determined by the condition that  $X_0$  has constant period in  $Y^*$ .

## Corrigenda

There is a different response curve for each intersection of this spiral with the initial surface. For small  $\gamma$  these intersections are all close to each other and lie on the curve given by

$$Y^2 + Z^2 = V^2 X_0, \quad GX_0^2 + 4kX_0 + 2V^2 = C(Y).$$

The extreme values of  $X_0$  for a given k occur in Z = 0 and are given by

i.e. 
$$\begin{aligned} X_0 &= \alpha_i (V \sqrt{X_0}) \quad (i = 1, 2), \\ G X_0^2 + 4k X_0 + 2V^2 &= C(V \sqrt{X_0}), \end{aligned}$$

where C depends on k as well as  $X_0$ . This curve can be drawn using computed values of C(Y) and is shown in figure 1 as ABC. For a given  $X_0$ , the minimum k occurs when Y = 0 since C(Y) increases monotonically with Y and C(0) = 0. At this point,  $GX_0^2 + 4kX_0 + 2V^2 = 0$  and this curve is shown in figure 1 as CDE. The remaining response curves lie close to each other in the shaded region between ABC and CDE. Figure 1 replaces figure 2(a) in the original paper.

'Oscillating flow over a cylinder at large Reynolds number' By H. A. DWYER AND W. J. MCCROSKEY

## J. Fluid Mech. vol. 61, 1973, p. 753

The labels  $\theta = 78^{\circ}$  and  $\theta = 82^{\circ}$  to curves in figure 8(b) should be transposed.